Technical Information: PM 9

PM 9 IS A HIGH VANADIUM TOOL STEEL PRODUCED USING the PM (pOWDERED METAL) STEEL MAKING PROCESS.
The grade has excellent wear resistance and toughness COMBINED WITH MODERATE HARDNESS
PM 9 IS IDEAL FOR APPLICATIONS SUCH AS PLASTICS PROCESSING EQUIPMENT

Typical Chemical Composition

CARBON	1.80%	ChROMIUM	5.30%
MOLYBDENUM	1.30%	SILICON	0.90%
VANADIUM	9.00%	MANGANESE	0.50%

Sulfur 0.03\%

PM Steel Properties Comparison

Relative Wear Resistance
Chipping Resistance

Physical Properties

Modulus of Elasticity. 32 PSI $\times 10^{6}$
(207 GPa)
Density.
0.286 Lb/in ${ }^{3}$
Annealed Hardness.255-275 Brinell Hardness (BHN)
Machinability. ..Similar to T15 High Speed Steel

Technical Information: PM 9

Heat Treatment

Annealing
Heat to $1600^{\circ} \mathrm{F}$, hold two hours
SLOW COOL $20^{\circ} \mathrm{F} /$ HOUR TO $600^{\circ} \mathrm{F}$
Then air or furnace cool to room temperature

Stress Relieving
Performed prior or after machining to minimize distortion in heat treating
$1100 / 1200^{\circ} \mathrm{F}$, HOLD TWO HOURS
THEN AIR COOL TO ROOM TEMPERATURE

Hardening
Salt bath, protective atmosphere, or vacuum furnace equipment preferred.
High Heat (Austenitizing)
1950/2050 ${ }^{\circ} \mathrm{F}$ FOR 20 tO 30 minutes at heat.
Higher Austenitizing temperatures require less time at heat

Quench
Salt bath quench to $1000-1100^{\circ} \mathrm{F}$, equalize, then air cool to $150^{\circ} \mathrm{F}$.
Vacuum or atmosphere quench rate of a minimum 50 degrees F per minute down to 1200F is CRITICAL TO ACHIEVE BEST HEAT TREAT RESPONSE.

Temper immediately following quench
Tempering
Minimum $1000^{\circ} \mathrm{F}$ tempering temperature required.
Double tempering is required, triple tempering recommended.
Air cool to room temperature between tempers.
Typical Heat Treat Response
Tempering Temp Hardening Temp Hardening Temp
${ }^{\circ} \mathrm{F}$
$1950^{\circ} \mathrm{F}$
$2050^{\circ} \mathrm{F}$
As Quenched
1000
1025
1050
1075
1100

56
54
53
52
50
48

LONGITUDINAL Size Change

